高性能、低成本的LoRa Core LLCC68芯片如何帮助传统小无线连接市场

在过去几年中,随着物联网应用和市场的快速发展,各种物联网技术也不断涌现并加速发展,对低成本、高性能的物联网链接技术的需求不断提高,而传统的小无线技术在最近10多年中技术停滞,逐渐无法满足市场的需求。

针对这一需求,Semtech公司开发了高性能、低成本、更稳定的LoRa Core LLCC68芯片,来帮助传统小无线链接市场的发展。

选择LoRa Core LLCC68的三大理由:

  • LLCC68同时支持LoRa模式和FSK模式
  • 与传统的小无线产品相比,LLCC68的FSK模式的灵敏度更高
  • LLCC68的LoRa模式支持更完善的性能和解决方案

LoRa Core LLCC68能够满足市场多种无线传输需求,其目标应用市场包括:

  • 现有FSK小无线市场
  • 基于LoRa的智能家居应用
  • 需要抗干扰、远距离且实时性的工业控制场景
  • 原有LoRa不需要超远距离的场景

稳定的供应链是一种竞争优势

物联网行业对FSK和LoRa无线通信并不陌生,它们都是应用最广的物联网技术。LoRa一词取自英文Long Range两个单词的首字母Lo和Ra,代表“远距离”的意思。LoRa原本也是基于FSK通信的原理,但它是一种创新的线性调频扩频的物理层调制技术(Chirp Spread Spectrum,CSS),最早由法国几位年轻人创立的一家创业公司Cycleo推出。

2012年,全球领先的半导体产品及解决方案供应商Semtech收购了这家法国公司,将这一种调制技术与其深厚的射频和混合信号芯片技术相结合,推出了具有低功耗、长距离和高灵活性的系列芯片并取名“LoRa”。近几年,Semtech公司基于LoRa技术不断进行芯片、软件和云/智能化优化,开发出一整套LoRa通信芯片解决方案,包括用于网关和终端上不同款的LoRa芯片,开启了LoRa芯片在全球广受欢迎的产品化之路。

Semtech作为一家全球性的公司,其分布在世界各地的资源体系将保障LoRa等芯片的供应。Semtech LoRa芯片的产品研发和知识产权在欧洲,从而能够保证顺畅而全面的创新技术合作。在中国销售的LoRa芯片都是在瑞士研发和供应,其在中国市场的销售不受国际技术贸易环境的影响。同时,Semtech已经在欧洲和中国授权了两家芯片合作伙伴生产LoRa芯片产品,这使得LoRa芯片供应实现了多元化,在中国运营的LoRa网络可得到极为可靠和稳定的芯片保证。

Semtech在LoRa芯片设计时充分考虑了外围电路的设计、采购便利性以及成本,在开发LoRa Core LLCC68芯片时,基于这些考虑因素,提供了全新的参考设计。该开发套件基于全部国产的、性能和供应稳定的外围元器件,由于不需要温补晶振和PA等器件,其整体成本很低。可以帮助客户和合作伙伴在传统中低速率FSK技术应用中降低供应链风险,并以高性价比的解决方案去面对竞争。

创新的技术是核心竞争优势

作为一种创建长距离通信连接的物理层无线调制技术,LoRa已成为在全球广受欢迎的创新物联网技术,它主要在全球免费频段运行(即非授权频段),包括433、470、868、915MHz等。从组网模式来看,LoRa常采用星状网络,即网关星状连接终端节点,但终端节点并不绑定唯一网关,因而终端节点的上行数据可发送给多个网关。理论上来说,用户可以通过Mesh、点对点或者星形的网络协议和架构来实现灵活的LoRa组网。

LoRa技术不需要建设基站,一台网关便可控制较多设备,并且布网方式较为灵活,可大幅度降低建设成本。LoRa将其自组,安全,可控等诸多特性与物联网碎片化、低成本、大连接的需求相结合,因此被广泛部署在智慧社区、智能家居和楼宇、智能表计、智慧农业、智能物流等多个垂直行业。

基于其数十年来已经在军事和空间通信中验证过的宽带线性调频(Chirp Modulation)技术,相较于传统的FSK技术以及其他稳定性和安全性不足的短距离射频技术,LoRa在保持低功耗的同时极大地增加了通信范围,具有传输距离远、抗干扰性强等特点。

以Semtech最新推出的LoRa Core LLCC68器件为例,LoRa技术具有以下网络特征:

  1. 更长的通信距离:与传统FSK技术相比,LoRa的灵敏度更接近香农定理的理论极限值,而且打破了传统FSK窄带系统的实施极限。

  1. 更强的抗干扰能力:LoRa采用了扩频技术,可以在噪声之下最高20dB还能正常接收(LLCC68支持17.5dB之下), 而FSK理论上需要在噪声之上8dB才能保证要求的PER;LoRa能够容忍更强的突发性的随机干扰, 如果突发长度< ½ LoRa的符号长度,其灵敏度恶化将<3dB,干扰占空比<50%。

  1. 全程低功耗:LLCC68器件的休眠电流小于1uA,工作时的发送电流为45mA@17dBm,接收电流仅为5mA。由于采用了Semtech创新的LoRa CAD技术,整个唤醒过程仅需要约2个symbol时间,其中约1个symbol接收(接收电流),以及1个symbol的时间计算,这时的电流为接收模式的50%左右。但在相同的速率下,FSK一般需要3bytes或以上的前导用于接收同步,接收窗口需要打开5ms以上;在相同速率下,执行周期侦听(WOR)时,LoRa的电池续航时间是FSK的3到4倍。
  2. 更大的网络容量:LoRa在同频段通讯类似码分复用,同频段不同扩频因子不会互相干扰,这得益于LoRa在节点的发包频次、数据包的长度、信号质量及节点的速率、可用信道数量、基站/网关的密度、信令开销和重传次数等网络容量决定因素上的全面创新和优化。正是基于这些特性,LoRa可以实现按需部署。

LoRa不需要温补晶振

当前,全球各地都在推进疫情的进一步防控与经济社会发展相互协同,物联网、5G、智能化等技术将在其中扮演更重要的角色,中国政府正在不断推进的“新基建”也在转化成为新的发展动力。目前温补晶振的缺货给无论是移动通信模块,还是传统的FSK小无线通信都带来了困扰。

LoRa技术的原理使其对频偏不敏感,如采用LoRa的BW125_SF9设置,即使采用+/-30ppm的晶振也可以实现-129dBm@1.8kbps的灵敏度,不需要温补晶振。但是,反观其他移动通信模块和FSK,它们都采用了对频率非常敏感的调制方式。

以FSK技术为例:其通信原理要求频率偏移必须在Fdev/4以内,才能保障灵敏度的理论值下降幅度在2dB以内,也就是即使使用+/-2ppm的温补晶振,也无法实现-123dBm@1.2kbps灵敏度,因为400Hz的Fdev只能是在实验室里严苛条件下才可能实现。

因此,使用普通晶体的LoRa Core LLCC68器件来开发相关应用,不仅可以大幅度降低供应链风险,而且还将因为不需采用温补晶振而降低成本。

下载LLCC68文档:

https://www.semtech.com/products/wireless-rf/lora-transceivers/llcc68

说明:LPWA物联网应用站(LPWAP.com)通过公开互联网收集、整理并转载有关LPWA物联网应用解决方案,以供广大LPWA应用开发者和爱好者共同学习交流和参考运用到实际生产生活中。本站所有转载的文章、图片、音频、视频等资料的版权归版权所有人所有并衷心感谢您的付出,由于本站采纳的非本站原创文章及图片等内容无法一一联系确认版权者,如果本网所选内容的文章原创作者认为其作品不宜放在本站,请及时通过以下留言功能通知我们采取适当措施,避免给双方造成不必要的经济损失。如果您希望保留文章在本站,但希望文章末尾提供对作者的致谢或者产品、网站交换链接的,也请将需求写入以下留言栏中,谢谢您的支持。让我们共同努力,打造万物互联的未来美好生活!

您的留言或需求: