物联网是个交叉学科,涉及通信技术、传感技术、网络技术以及RFID技术、嵌入式系统技术等多项知识,但想在本科阶段深入学习这些知识的难度很大,而且部分物联网研究院从事核心技术工作的职位都要求硕士学历,“LPWAN实验室”计划从收集、整理、翻译实用的物联网有关的知识着手,帮助各高校物联网专业学生利用这个实验室学习平台找准专业方向、夯实基础,同时增强实践与应用能力。虽然现在面临大学生毕业就业难的情况,但实际各行各业却急需物联网领域相关专业的人才,从目前情况来看,环保、安防、智能交通、农业、医疗推广的可能性最大,这也是成为高校热门专业的一个重要原因。从工信部以及各级政府所颁布的规划来看,物联网在未来十年之内必然会迎来其发展的高峰期。而物联网技术人才也势必将会“迎娶”属于它的一个美好时代。

一文看懂LoRa物联网!
本文为您回答: 什么是LoRa和LoRaWAN? 什么物联网场景用LoRa? 常见的Lora组网方式 LoRa为什么功耗低? LoRa的三个工作模式 根据应用场景选择LoRa工作模式 如何快速搭建LoRa物联网系统? LoRa是创建长距离通讯连接的物理层或无线调制, 基于CSS调制技术(Chirp Spread Spectrum)的LoRa技术相较于传统的FSK技术,能极大地增加通讯范围,且CSS技术数十年已经广受军事和空间通讯所采用,具有传输距离远、抗干扰性强等特点。 LoRaWAN是为LoRa远距离通信网络设计一套通讯协议和系统架构。它是一种媒体访问控制(MAC)层协议。LoRaWAN在整个流程的中充当MAC的功能,而LoRa调制充当物理层。 简单来说,单个网关或者基站可以覆盖整座城市或几百平方千米的范围,范围也取决于所使用位置的环境和干扰情况,但LoRa和LoRaWAN相比于其他标准通讯技术有着更好的链路预算,它通常以db表示,是决定指定环境传输范围的关键因子,下图是部署在柏林的LoRa网络的覆盖情况。 在偏远地区,如果没有NB-IoT信号,那么就更适合用LORA了。例如高原地区的牛羊定位管理,养牦牛的或者是养跑山猪的。或者是物联网设备很密集的地方,LORA也会比NB更便宜。例如智慧小区、智慧园区等等。 最常见的局域网的组网方式是形状组网。 星状组网是由中心节点和终端节点组成。如上图,中间的黑色圈就是中心节点,外部的小圆圈属于终端节点。 中心节点:就相当的一个网关,也是数据的处理中心。 终点节点: 就相当于探测器配件,诸如遥控器,无线门磁,烟感,燃气探测器等 LoRa之所以功耗比NB-IoT低,是因为极少发射数据。 就像两个人相距100米站着,你对别人喊话的时候要扯着嗓子吼,听的时候只需要静静的听,喊话的肯定比听话的累多了。 无线网络传输也一样,发送数据的时候比接收数据的时候功耗大的多。例如LoRa发射的工作电流超过100mA,接收的工作电流仅10mA。 这里讲的发射和和接收,不只是数据的上行和下行,还包括了“心跳包”内部的上行和下行。 NB就像两个人对话:一人说“告诉你一件事情,xxx”,另一人回答“好的,我听到了”。双方都在说话(发射数据)。 而LoRa就像两个人约定好时间,一人说“告诉你一件事情,xxx”,另一人只听,但不吭声。 NB-IoT和2G 4G一样,是设备端主动去询问基站,问“我在线,你有没有需要发给我的数据?” 这个过程中就需要设备端发射数据出去。 而LoRa不需要这一步,LoRa会和基站约定一个时间窗口,时间一到,基站只管说,终端只管听。这就是LoRa功耗低的核心原因。 双方都约定“10分钟后”开始沟通,双方各自的手表准不准,就很关键了。于是LoRa终端和基站需要定期“对时间”,(通过beacon)。 基站“讲话”了,终端有没有“听到”?如果基站需要知道终端有没有收到下行信息,就需要终端上行一个反馈信息。 这些技术细节网上资料很多,就不赘述了。 LoRa的工作模式和NB-IoT类似。 LoRa Class-A,等同于NB-IoT PSM模式。物联网终端要主动发消息给基站,基站才能找得到终端,并且下发控制指令。 Class-A 终端发数据的时候才能接收 LoRa Class-B,等同于NB-IoT的eDRX模式。物联网终端隔一小段时间联系一次基站,此时基站才能找得到终端,并下发控制指令。 Class-B 终端定期接收(一般是几十秒一次) LoRa Class-C,等同于NB-IoT的DRX模式或socket长连接。物联网终端和基站之间一直保持紧密联系,基站随时都能给终端下发控制指令。 Class-C 终端随时都可以接收,功耗大 不需要实时控制终端设备的,选择Class-A。省电,一节电池能用几年。例如智能水表、气表、智能井盖、智能垃圾箱等 需要实时控制终端设备的,且延迟几十秒也无所谓的,选择Class-B。省电和控制取个均衡。一节电池也能用半年。例如路灯控制、牛羊定位器、农林大棚控制等。 需要实时控制终端设备,且对延迟要求比较高的,选择Class-C,老老实实接电源吧。话说这种情况也不是LoRa的主打应用场景,用的很少。 LoRaWan现在已经很成熟了,从传输模块到基站到LoRa云服务一整套可以打包获取。 开发者只需要用MCU挂载LoRa传输模块,就可以通过LoRa云服务器收取MCU的上行数据、下发控制指令。 和NB-IoT几乎一模一样:MCU挂载NB模块,从运营商的服务器收取MCU的上行数据、下发控制指令。 两者的区别:LoRa需要自己买基站、NB需要自己去买sim卡。 举个例子:使用机智云GL600 […] Read more.
LPWAN低功耗广域网技术比较:Wi-SUN、LoRaWAN、NB-IoT
LoRaWAN、Wi-SUN与LTE NB-IoT技术对比 一、什么是Wi-SUN? 日常生活中,大家可能很少会听到关于Wi-SUN的技术话题,其实Wi-SUN就是无线智能泛在网络场域网的简称。 Wi-SUN 的物理层规范在 IEEE 802.15.4g 中定义,MAC 层规范在 IEEE 802.15.4e 标准中定义。Wi-SUN联盟管理Wi-SUN设备的推广,认证和它们之间的互操作性。 Wi-SUN是一种基于网状拓扑的网络协议,与基于星形的Wi-Fi或LTE不同。Wi-SUN 支持星形、网状和混合拓扑。Wi-SUN通常按照网格架构进行部署,其中每个节点将数据中继到网络。Wi-SUN 设备使用交流电源和电池电源运行。 如图所示为Wi-SUN 网络架构,它是一个由节点(即路由器)组成的全网状网络。多个节点通过边界路由器连接,该路由器使用蜂窝或光纤或以太网链路将它们与WAN连接。安装了NOC(网络运营中心)来监视Wi-SUN网络及其元素。 二、什么是LoRaWAN? LoRaWAN作为低功耗广域网技术中使用最为广泛的一种,相信大家都已耳熟能详。LoRaWAN使用LoRa设备,提供低功耗和广域网。它使用未经许可的 ISM 频段。LoRaWAN标准和互操作性认证由LoRa联盟支持和管理。 LoRaWAN网络架构遵循星形拓扑,其中LoRaWAN终端设备与LoRaWAN网关进行通信。这些网关连接在一起,并与最终用户应用程序运行的核心网络服务器接口。LoRaWAN网关使用蜂窝、Wi-Fi或以太网回程连接与网络服务器接口。不同的云服务器可用于LoRaWAN物联网应用程序,如AWS IoT Core,ThingSpeak,Google Cloud Server等。LoRaWAN网络使用MQTT、CoAP或HTTP协议在LoRaWAN网关和应用程序服务器之间建立连接。 三、什么是LTE NB-IoT? LTE NB-IoT遵循3GPP规范rel.13,rel.14和rel.15。它被称为低功耗广域网技术。它改善了室内网络覆盖范围,并支持网络中更多数量的设备。NB-IoT设备提供更长的电池寿命,并且成本更低。它用于低功耗和不频繁的数据传输设备。NB-IoT系统在LTE运营商的防护带内使用GSM频谱或未使用的RB(资源块)。LTE NB-IoT架构分为两部分,即接入和核心。UE使用Uu接口连接到eNBs(即基站)。eNBs通过X2接口连接在一起。eNMB通过S1接口连接到核心网端。 四、Wi-SUN、LoRaWAN、LTE NB-IoT三者的具体区别 下表总结了Wi-SUN、LoRaWAN和LTE NB-IoT技术之间的比较差异: 来源:成都亿佰特电子科技有限公司/百度号 Read more.
LoRa模块无线收发通信技术详解
LoRa是一种LPWAN通信技术,它基于扩频技术而广泛应用于超长距离的无线传输场景中。现在,LoRa主要在全世界433、868、915MHz等自由频带工作。其最大特征是灵敏度高,传输距离长,工作功耗低,网络节点多。 NB-IoT正在积极发展,但LoRa技术在世界各地登录了业务项目,其技术成熟度已经处于领先地位。近年来,LoRa技术依然非常有用。本文简要介绍了LoRa技术的基本内容。 一、LoRa低功耗的秘诀 我们知道距离和功耗是通信系统中的自然矛盾。发送功率下降时,传播距离必须很近。那么,LoRa如何解决这个矛盾?根本原因是LoRa有超链接预算,因为LoRa可以提高接收机的灵敏度,不需要高****功率。LoRa接收机的灵敏度基于直接序列扩频技术。LoRa使用高扩展系数来获得高信号增益。通常,FSK的信噪比需要8dB,而LoRa只需要-20dB。 另外,LoRa应用前向纠错编码技术给传输信息增加冗馀性,有效地抵抗多路径衰落。传输效率略有牺牲,但可以有效地提高传输的可靠性。毕竟,LoRa不需要高传输速率。 二、LoRa网络 LoRa网络主要由终端(带内置LoRa模块)、网关(或****)、网络服务和应用服务组成。应用程序数据可以双向传输。 LoRaWAN网络体系结构是典型的开始拓扑。在此网络架构中,LoRa网关是连接终端设备和后端中央服务的透明传输中继。 三、LoRa终端设备 LoRa的终端节点可以是水表、煤气表、烟雾警报器、宠物追踪装置等各种设备。这些节点首先通过LoRa无线通信连接到LoRa网关,然后通过3G网络连接到网络服务。或者以太网。网关和网络服务器通过TCP/IP协议进行通信。 LoRa网络将终端设备分为A/B/C三类: a类:双向通信终端设备 这种类型的终端设备允许双向通信,并且每个终端设备的上行链路传输具有两个下行链路接收窗口。终端装置的传输时隙根据自身的通信要求,其微调基于aroha协议。 b类:具有预先设定的接收时隙的双向通信终端设备 这种类型的终端设备在预先设定的时间内打开冗馀的接收窗口。为了实现这一点,终端装置从网关同步接收信标,通过信标同步****和模块的时间。 c类:具有最大接收窗口的双向通信终端设备 这种类型的终端设备将继续打开接收窗口,仅在传输过程中关闭。 亿佰特专注于物联网无线通信行业,时刻关注着物联网通信技术和行业发展,走在物联网无线通信技术中最前沿。与上述芯片厂家保持紧密合作关系,开发出简单易用,物美价廉的无线通信模组。包括WiFi模组、蓝牙模组、Zigbee模组、NB模组、4G模组、私有无线模组、LoRa模块及LoRaWAN网关模组。 来源:成都亿佰特 Read more.
LoRa技术有哪些应用场景?
LoRa远程无线传输技术拥有传输距离远、功耗低、性能高、无线组网,远程定位等一系列特点,使用终端与LoRa基站组件低功耗数据传输网络成为了物联网大规模推广应用的理想选择之一。目前全球已经支持LoRa网络国家100多个,LoRa更加适合对快速、自助、连续覆盖、深度覆盖等要求非常高的场景。国内市场对于LoRaWAN协议的采用,主要聚焦在智慧城市、智慧建筑、智能家居、智能农业、无线工业等各个领域 一、智能农业 对于智能农业,节约成本,了解农作物生长是十分有必要的,这时候就需要使用温湿度、二氧化碳、盐碱度等传感器来对农作物以及农产品的生长环境进行检测,了解农作物的灌溉以及生长情况,降低水资源和光资源的消耗,很多偏远农场牧场都并没有覆盖蜂窝网络,更不用说4G/LTE了,这时候使用LoRa技术搭建私有物联网就可以将农作物的数据定期上传,做到远程管理了 二、自动化工厂 工厂采用LoRa的网关或者基站进行信号覆盖,并且在工厂各个数据采集节点安装LoRa模块,这样就可以对生产时候的数据进行动态采集传输,再通过云平台或者私有平台将数据进行分析和优化,展现在生产管理人员的面前 三、建筑行业 对于建筑行业来说,安全、环境、流程、物体状态等数据情况都是十分重要的,比如安传物联生产的LoRa智能腕表,佩戴在工人手上,即可向工人做到指令下达,数据回传,对施工现场做到好的管理,通过烟雾传感器、灰尘检测器即可对施工环境进行更好的把控、同时还可以使用振弦等传感器来进行建筑物的管理等 四、报警系统 使用LoRa与传感器的结合可以将各种智能终端(温湿度、烟雾、水浸、有害气体等传感器)进行连接,可灵活布置终端报警点,实现区域报警,遭遇问题可以快速上报,适合在不便于施工的历史建筑还有临时大型活动场所检测等场景 五、停车管理,针对停车收费、信息反馈不及时等管理问题,通过LoRa物联网技术,在停车位上布设LoRa传感器,实时监控车位状况,全面管控车位使用情况 除此之外,像是水电气抄表、智能井盖、智慧家居等各种行业都可以用上,有点多,不想写了 ,以后有机会再详细介绍LoRa在其他方面的应用吧。 来源:安传物联/百度号 Read more.
谈谈LoRa与LoRaWAN
在物联网(IoT)的世界中,连接就是一切。这些产品和应用程序可以将他们的地面智能传输到云端,以进行监控、管理和决策。虽然为产品、设备或机器添加连接从未如此简单,但为解决方案选择正确的连接仍然充满复杂性。 在某些情况下,很明显以太网或Wi-Fi是正确的选择——例如在家庭或工厂中。在其他情况下,近场通信(NFC)或蓝牙可能是首选选项,因为您的解决方案需要短距离设备到设备通信。但是,如果您的产品是移动的,或者在Wi-Fi根本无法覆盖的城市、农业或其他环境中,您就只能寻找其他方法了——包括蜂窝或LoRa和LoRaWAN(远程广域网)。 通过全球统一的频段和运营商间漫游协议,以及为数据密集型应用提供高带宽连接的可用性,蜂窝网络的全球覆盖范围使这种方法对许多用例具有吸引力。尽管具有吸引力,但一些应用偏爱LoRa,它的信号具有抗噪性,而且免费、使用未经许可的频段使得单个设备的单位成本显着降低。 鉴于不同的需求,蜂窝或LoRa等方法更具互补性而不是竞争性。 什么是LoRa? LoRa是一种低功耗通信协议,旨在使用未经许可的频谱进行长距离操作,特别是为工业、科学和医疗(ISM)目的而保留的无线电频段。 LoRa设备以Sub-1GHz频率进行通信,因此可以实现长距离的数据传输,可用频段很窄,且一些政府对这些频段上的设备传输频率有严格的规定。在开放系统互连(OSI)术语中,如图1中的参考模型所示,LoRa芯片是支撑其之上所有事物的物理层,并使硬件设备能够利用未经许可的频谱进行低功耗广域网(LPWAN)应用,它规定了用于无线电通信的频谱和协议。 图1.LoRa在OSI参考模型的物理层运行 尽管LoRa在Sub-1GHz频谱下运行,但LoRa芯片利用的特定频段因地区而异。欧洲的LoRa无线电的工作频率为863-870/873MHz,而亚洲和南美的设备工作频率为915-928MHz,北美的设备工作频率为902-928MHz。在为某个应用购买LoRa芯片时,许多芯片将根据特定的范围要求预先编程到某个地区的频谱。在图2中可以看到具有LoRa频率范围的频谱概览。 图2.LoRa无线电在Sub-1GHz频谱上运行。图片由NASA提供 除了使用的频谱之外,LoRa还指定了用于无线电通信或LoRaPHY的协议。 LoRa调制:啁啾扩频 LoRa使用专有的无线调制技术,它是啁啾扩频的衍生物,它使用“啁啾”脉冲作为编码信息的一种方式。啁啾是一种正弦波,如图3所示,其信号频率随时间增加或减少。 图3.LoRa使用一系列增加(如此处所示)或减少的“啁啾”脉冲对信息进行编码。图片由Georg-Johann提供 LoRa无线电通过使用多个信息啁啾来表示有效载荷中的每一位信息来执行其调制。在这种情况下,“扩频”意味着使用这种技术的设备,包括LoRa衍生产品,都使用分配的带宽进行广播,从而使这些信号能够抵抗ISM频段上常见的信道噪声。 LoRa设备允许工程师调整他们的应用程序,并使用称为扩展因子(SF)在高数据速率或高灵敏度之间进行选择。使用可调无线电参数,工程师可以选择每秒发送的啁啾数量。低SF将每秒发送更多的啁啾,这意味着您可以每秒编码更多的数据,但从接收器的角度来看,信号不是很敏感。 低灵敏度意味着您打算发送的数据在途中丢失的可能性更高。另一方面,高SF将每秒发送更少的啁啾,但会产生对接收器更敏感的信号,因此更可靠。然而,高SF啁啾需要更多的“通话时间”(网络上的传输时间)并且需要更多的功率,因为调制解调器运行的时间比使用低SF方法的时间更长。 通过为无线电设置SF以及更改调制解调器的传输功率(根据地区可在2dBm和20dBm之间调整),LoRa为工程师提供了功能强大的工具,用于根据他们的需要配置应用程序的功耗和通信范围。 作为物理层,LoRa涵盖了在可以使用相同协议的公共频谱上实现远程通信所需的一切。但是,它并未涵盖设备如何相互识别、如何以最大限度地减少网络串扰的方式相互通信,或者如何将来自本地网络设备的数据安全地传输到云或远程位置。这就是LoRaWAN(和其他人)的用武之地。 什么是LoRaWAN? LoRaWAN是建立在基于LoRa的调制之上的网络协议。尽管LoRa本身本质上是点对点的,但LoRaWAN通过定义两个核心设备角色将网络塑造成一个中心辐射型: 一个节点,通常是一个传感器 集中器,充当节点和云之间的网关 在OSI术语中(图4),LoRaWAN规定了处理节点到节点通信的数据链路层,以及处理节点如何跨本地网络边界发送数据和从本地网络边界接收数据的网络层。 图4.LoRaWAN指定了在OSI参考模型的数据链路和网络层运行的技术。 在数据链路层,LoRaWAN定义了一种介质访问控制(MAC)协议,该协议确定网络上的节点如何识别自己(也称为MAC地址)以及用于LoRa设备之间通信的功率要求、频率和数据速率。 在网络层,LoRaWAN涵盖了位于网络边缘以与LoRaWAN节点通信的物理硬件以及位于云中的服务。这包括接收、路由、处理来自本地LoRa网络的数据以及将数据路由到本地LoRa网络(图5)。 图5.典型的LoRaWAN网络由本地和基于云的元素组成。 集中器充当网关,管理来自LoRaWAN节点的连接,以及通过互联网与广域网服务器的连接。市场上的许多集中器往往包括八个通道,用于同时接收来自LoRaWAN节点的请求数据包,以及一个用于将响应数据包发送回这些节点的通道。网关与网络服务器合作,在设备加入LoRaWAN网络时对其进行管理,并处理与基于云的应用服务器之间的通信。 虽然不是LoRa唯一的媒体访问协议,但LoRaWAN协议享有广泛的行业支持并拥有健康的生态系统。它由LoRa联盟发起并维护,该联盟成立于2015年,旨在支持LoRaWAN协议的协作开发并确保LoRaWAN产品和服务之间的互操作性。 在世界的某些地区(尤其是欧洲),蜂窝运营商已经看到了提供自己专有的LoRaWAN网络的收入潜力,其中许多网络针对智能城市和农业应用。在其他地方,更常见的是将LoRaWAN网络视为“构建自己的”广域专用网络,客户需要自己资助和部署。 LoRa与LoRaWAN 在本文开头提到LoRa和LoRaWAN经常互换使用,因此大多数工程师期望这些技术必须在一个解决方案中一起使用也就不足为奇了。虽然LoRaWAN确实需要在边缘网络中使用LoRa设备才能运行,但LoRa部署不一定需要LoRaWAN集中器、网络或应用程序服务器。 LoRa是物理层传输技术,典型特点是距离远、功耗低、速率相对较低。对应的产品就是收发器芯片,使用这种技术需要把自己业务bit输入或者读出,再往上层的协议和业务都需要自己定义。 LoRaWAN是在LoRa物理层传输技术基础之上的以MAC层为主的一套协议标准。对应产品包括LoRaWAN节点,LoRaWAN网关和LoRaWAN的协议和数据云平台。 现实情况是,虽然LoRaWAN是LoRa广域网最流行和部署最广泛的协议,并且是支持许多设备的可互操作标准,但它可能不是每个LPWAN应用程序的最佳选择。除了8通道集线器的费用外,LoRaWAN协议还规定了可能不适用于每个用例的链路、通话时间和功率要求——尤其是那些节点数量不多且不经常传输的情况。此外,您希望使用的云服务可能不符合LoRaWAN解决方案的网络和应用服务器要求。 在没有LoRaWAN的情况下使用LoRa 在没有LoRaWAN的情况下使用LoRa的第一步是您必须实现自己的媒体访问协议,以便节点可以在彼此之间就如何识别彼此达成一致,如何一次通信,以及如何以及何时在不相互干扰的情况下进行空中通信。在没有 LoRaWAN 的情况下将 LoRa 部署连接到云还需要实施您自己的机制来处理到云服务的回程。 这可能感觉过于复杂,但是,根据您的需要,它可以非常简单:两个节点的点对点连接可以交替发送和接收角色,几十个节点的小型网络可以使用非常简单的时分多址 (TDMA) 时隙协议。 LoRaWAN 是为大规模网络设计的,如果目标是灵活且成本更低的单点解决方案,LoRa 节点无需重新实现 LoRaWAN 协议的每一部分,这种方法在市场上并不少见。 Amazon Sidewalk 用于 Echo、Ring 和其他亚马逊智能设备,使用 […] Read more.
如何克服LoRa终端节点设计中的挑战?
LoRa(远距离)技术可将远距离无线连接与低功耗性能相结合,从而扩展物联网(IoT)的覆盖范围。从智慧城市到智慧农业再到供应链跟踪,LoRa可满足各种需求,非常适合用于构建在城市和郊区环境中均可运行的灵活IoT网络。 但是,要开发一个全新的LoRa解决方案或移植到一个全新的LoRa解决方案,难度究竟如何? 这需要对全新的无线技术有所了解,并能够挑选出适合您应用的解决方案,整个过程可能会让人心力交瘁。无线射频(RF)设计通常需要深入的RF专业知识,而且会占用设计人员大量的开发时间。 本文将介绍LoRa网络架构的四个主要元素,并详细讨论设计人员在开发LoRa终端节点时面临的一些最常见的挑战。我们还会介绍在帮助克服这些挑战并缩短上市时间方面,经过法规认证的LoRa模块有何作用。 LoRaWAN网络架构 LoRa是一种无线调制技术,也是物理层,支持低功耗终端设备进行远距离通信。LoRaWAN是一种无线联网协议,用作介质访问控制(MAC)层,并在LoRa物理层之上实现。LoRaWAN规范详细说明了通信协议和网络架构,旨在确保终端设备之间的安全通信以及网络内的互操作性。 LoRa网络有四个要素,具体如图1所示。 图1.LoRa网络的四个要素(图片来源:LoRa联盟) 1. 终端节点是LoRa生态系统的构成要素,用于收集传感器数据以及发送/接收数据。这些要素通常采用远程连接方式,并由电池供电。 2. 网关是终端节点与网络服务器之间的透明网桥。通常,终端节点通过LoRaWAN连接到网关,而网关利用Wi-Fi、以太网或蜂窝等高带宽网络连接到网络。 3. 一个网络服务器可以连接到多个网关,能够从多个网关收集数据并过滤掉重复消息,决定哪个网关应该对终端节点消息做出响应,并调整数据速率以延长终端节点的电池寿命。 4. 应用服务器从终端节点收集数据并控制终端节点设备的动作。 下面我们来详细了解一下LoRa终端节点的概念,以及进行相关设计时会遇到的挑战。 设计LoRa终端节点的常见挑战 终端节点是比较简单的对象,例如传感器和执行器。通常,这些对象就是物联网(IoT)中的“物”。在LoRaWAN生态系统中,终端节点通过一个或多个网关与网络服务器通信。 大多数情况下,LoRa终端节点都是低成本的电池供电类应用,需要具有高成本效益和高能效。有多种方案可用于构建LoRa终端节点,具体取决于开发时间、目标成本、功耗和具备的RF专业知识。在研究可用于构建LoRa终端节点的方案之前,我们先来看看设计人员在设计终端节点时面临的一些最常见的挑战,这有助于我们挑选合适的产品。 在设计这种终端节点架构时,以下领域的挑战最为常见: 1. RF设计 与所有其他无线设计一样,设计LoRa终端节点也需要具备大量的RF设计专业知识。在使用LoRa SoC/SiP时,终端节点设备开发人员负责整个RF设计,包括原理图、BOM、PCB布局、天线调谐和其他射频硬件。即使备有可靠实用的文档和应用设计指南,RF设计也并不总是那么容易。设计过程不仅需要深入的RF专业知识,而且还会占用设计人员大量的开发时间。调试RF设计通常还需要特殊设备,这进一步增加了开发成本。为了克服RF设计挑战,一些供应商会提供附带各种支持的SoC/SiP,其中包括非常实用的文档、经过法规认证的参考设计和内容详尽的芯片级设计包。然而,要想尽可能缩短开发时间并降低风险,已针对射频进行优化、测试和认证的LoRa模块总是最佳选择。这类模块可以用作单个组件以提供完整的解决方案,从而降低设计风险并缩短开发时间。 2. 合规性与认证 LoRa/Sub-GHz无线电通常在免许可的ISM频段运行,并且频率会因地区而异,这对硬件和软件设计人员来说是一项挑战。设计人员必须小心谨慎,以确保设计出完全合规的解决方案,同时尽可能降低BOM成本。此外,RF法规要求不断变化,跟上法规变化、重新测试设备和重新认证合规性可能需要终端节点开发公司投入数千美元和大量的工程时间,而这些资金和时间本可以用于新项目。使用经过认证的LoRa模块可以轻松解决这个问题,因为模块制造商会负责满足最新法规要求,并重新认证模块以符合最新规范。若选择经过法规认证的LoRa模块,则可以完全避免花费在确保合规性上的所有成本和时间。 3. 多地区工作 LoRa设备支持不同地区的多种工作频率。终端节点制造商通常会先在一个主要地区发布其终端产品。一旦需求增加,公司就会考虑扩展相同设计的应用范围,以覆盖其他地区。若拥有一个支持多个地区的SKU,则可以将最终产品无缝移植和扩展到不同的国家和地区。经过法规认证的LoRa模块适用于多个频段,是此类产品扩展的理想选择。 4. 可靠的软件 通常,LoRa模块将整个LoRaWAN协议栈集成在模块内部,终端节点开发人员只需实现模块的初始化和通信即可。 对于LoRa SoC/SiP和独立的LoRa模块,协议栈必须由制造商提供,如果没有提供,则开发人员必须自行开发协议栈。为了最大限度地减少软件开发工作,建议选择制造商的LoRaWAN协议栈支持的LoRa模块/IC。制造商提供的经过验证的LoRaWAN协议栈可确保终端节点与主要LoRaWAN网络和网关之间的互操作性,使终端节点能够在不同的网络上工作,同时降低风险。 5. 从模块到SoC的移植方案 许多公司基于经过认证的模块着手进行原型设计和初始生产运行,以期降低风险并加快其产品的上市步伐。在其产品开始生产爬坡后,公司可能会决定转为使用LoRa SoC/IC,以提高灵活性或降低BOM成本。移植并非总是简单易行,因此务必考虑选用允许在模块与IC之间进行简单软件移植的独立模块。此外,必须选择同时销售模块和SoC的供应商,以便开发平台、软件移植和支持结构可以保持不变。 经过法规认证的LoRa模块有助于克服挑战并简化LoRa终端节点设计 LoRa模块包含所有必需的无线电元件以及LoRaWAN协议栈和RF电路,因此是加快LoRaWAN终端设备开发速度的理想选择。RF开发和认证由模块制造商执行,因此认证规范的任何变更或组件更换都完全由制造商处理,从而为终端设备制造商节省了大量的开发时间和重新认证成本。 独立LoRa模块具有高度集成的LoRa IC,可提供足够的内存来运行应用程序代码以及LoRaWAN协议栈。这样一来,便无需使用外部单片机,可以节省电路板空间和系统成本。下面的图2和图3给出了这种独立模块的简单示例。WLR089U0模块基于Microchip的SAM R34/35系列IC,是一款紧凑型模块,具有256 KB闪存和40 KB RAM,非常适合空间受限的应用。此外,该模块还集成有RF开关,可实现多频段工作,并允许在多个地区使用同一模块,从而更加轻松地扩大终端产品的市场。WLR089U0还受Microchip久经考验的LoRaWAN协议栈和专有的点对点软件支持,正在开发LoRa应用的最终用户可借此简化软件开发过程。这类模块基于SAM R34/35 IC,因此在模块与IC之间的移植也更加简单。选择这类模块有助于在开发LoRa终端节点时克服所有常见的设计挑战,从而简化整个设计过程。 图2.WLR089U0 LoRa模块框图 图3.WLR089U0 LoRa模块 结论 […] Read more.
LoRa系统芯片应用技术说明
国内第一款LoRa集成的单芯片SoC ASR6501推出之后,极大地缓解了国内芯片半导体的紧张局面。紧追其后,在2019年4月深圳举办的LoRa生态发展及创新应用论坛上,ASR正式发布全新的LoRa系统芯片ASR6505,这是继LoRa集成的单芯片SoC ASR6501之后,ASR推出的第三款LoRa系统芯片。 ASR6505是一种通用的LoRa无线通信SIP芯片,集成了LoRa无线电收发器、LoRa调制解调器和一个8位CISC MCU。MCU采用先进的STM 8位核心,运行频率为16MHz。LoRa无线电收发机的频率覆盖范围为150兆赫至960兆赫。LoRa调制解调器支持LPWAN用例的LoRa调制和遗留用例的(G)FSK调制。由ASR6505设计的LoRa无线通信模块为LPWAN应用提供超长距离和超低功耗通信。 ASR6505是ASR IOT设计的一款基于STM 8位MCU与SX1262 的SIP芯片。支持最全LoRa频段,较32位单片机的LoRa系统芯片更具成本优势。具有高灵敏度和高发射功率,丰富接口资源可以满足不同的应用场景。该芯片集成LoRaWAN,LinkWAN及Alios,适用于多种物联网应用场景,包括表计类,智能城市,安防,智慧畜牧,智能物流,智能楼宇等等。 ASR6505的灵敏度可以达到-140dBm以上,最大发射功率高于+21dBm。这使得它适合在远程LPWAN中使用,并且具有很高的效率。整个芯片封装非常小,8mm x 8mm,共有68个引脚。 芯片组特性: SX1262+STML152芯片组 封装大小:8mm*8mm*0.9mm, QFN 68PIN LoRa 无线和LoRa调制解调 频率范围:150MHz~960MHz; 最大输出功率:21dBm; 灵敏度:-140dBm; 深度休眠电流:2uA(with RTC); TX mode current 50Ma@17dBm; 40Ma@14dBm; 接收电流:10mA; 可编程速率最高62.5kbps @调制模式 可编程速率最高300kbps @ (G)FSK模式 前导检测; 嵌入存储器(128K FLASH, 16K SRAM) 30个GPIO口,1个I2C,2个UART,1个SWIM,1个SPI,3个ADC; 模块内部与外部接口: ASR的低功耗LoRa SoC芯片结合Alibaba的LoRa物联网生态,可以实现从端到云再到端的便捷连接。相信未来ASR的ASR6505芯片将可以彻底取代传统的STM8L+SX1276/SX1278的设计方式,使LoRa在IoT市场得到更加长足的发展。 作者:Cheryl1169/动能世纪 来源:百度/知乎 Read more.
LoRaWAN 是蜂窝物联网挑战的解决方案吗?
十年前,人们对推动大规模物联网发展的蜂窝网络寄予厚望。 事实上,根据 Enterprise IoT Insights 最近的一份报告,思科和爱立信都预测,到 2020 年,互联设备市场将达到 500 亿台设备。 但整个物联网市场的增长速度比当时的预测要慢,在这些预测结束一年多后,目前只有 124 亿台物联网设备在流通。 然而,LoRaWAN 等 LPWAN 解决方案可以轻松适应物联网应用需求,将对海量物联网产生更大的影响。   大规模物联网由大量低复杂性、低成本设备组成,这些设备连接到支持相对较低吞吐速度的网络。这种专为物联网构建的传感器设备和网络的组合正在改变企业的运营方式、公共基础设施的监控方式以及组织实施可持续发展计划的方式。因此,很容易看出为什么 10 年前对蜂窝网络寄予厚望。毕竟,蜂窝连接在其他类型的设备中占主导地位。运营商已经拥有了基础设施,那么为什么不能很容易地使用它来为大规模物联网提供动力呢?似乎距离大规模物联网的发展只有几年的时间。然后还有几个。总是在地平线上。   蜂窝物联网挑战   事实证明,大规模物联网部署所需的技术在做出这些预测时并不存在。除其他挑战外,基础设施成本、设备电池寿命要求和可用性之间存在不匹配。蜂窝运营商试图使用并非专门为物联网而构建的技术来连接预测的数十亿台设备。   在目前部署的物联网设备中,2G 和 3G 代表了蜂窝物联网连接的大部分,53.1% 使用其中一种。这是有问题的,因为运营商正在淘汰这些传统技术,而它们的替代品仍在努力获得牵引力。今年,AT&T 和 T-Mobile 等运营商正在关闭其 3G 网络,而全球大部分地区的 2G 网络已经落伍,欧洲的一些地区也将紧随其后。 47% 的用户没有收到网络关闭的通知,这造成了不确定的前进道路。   近年来,随着用例需求变得更加清晰,蜂窝低功耗广域网 (LPWAN) 技术得到了发展,但即使在其最主要的地区,挑战仍然存在。以中国为例。根据 Sequans 的内部估计,它是 NB-IoT 和 Cat-M1 的最大和增长最快的市场,2020 年该地区售出 1 亿个蜂窝 LPWAN 芯片组。据估计,世界其他地区仅占 500 万个 NB-IoT 芯片组。在中国,数据计划和对基础设施的投资使这项技术得以普及,但即使在中国,硬件供应商也在努力扭亏为盈。   让我们来看看三个蜂窝物联网挑战,以及LoRaWAN如何能够提供解决方案。 […] Read more.
无线组网模块(LoRa模块)JX-660,超低功耗,操作简单,使用方便
JX-660是一款高性能、低功耗、远距离的微功率星型无线组网模块,内部自动扩频计算和前导CRC纠错处理,不改变用户的任何数据和协议,采用半双工透明传输机制,实现串口无线收发代替有线传输的功能,适合无线水表,气表,传感,等低功耗应用场合。 模块的射频芯片基于扩频跳频技术,在稳定性、抗干扰能力以及接收灵敏度上都超越现有的GFSK模块。配置低功耗高速处理器,数据处理能力、运算速度均有所提高。 用户可以通过我们公司配置的上位机软件根据实际需求灵活配置模块的工作频率、串口速率、扩频因子、扩频带宽等参数,操作简单,使用方便。 技术参数 应用领域   来源:深圳捷迅易联科技有限公司 Read more.
31个深度问答,揭开LoRa背后那些事儿
LoRa 是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。这一方案改变了以往关于传输距离与功耗的折衷考虑方式,为用户提供一种简单的能实现远距离、长电池寿命、大容量的系统,进而扩展传感网络。目前,LoRa 主要在全球免费频段运行,包括433、868、915 MHz等。 再深入了解LoRa之前,我们先从LoRa联盟最新白皮书开始,聊聊LoRa那些事 LoRa联盟最新白皮书:为IoT应用供应商提供完整的端对端加密 安全是所有应用场景的基本前提,所以从一开始在LoRaWAN协议中就对安全性进行了设计。然而安全包含众多方面,尤其是LoRaWAN的加密机制需要特殊的解释。 所以此白皮书将会对当前LoRaWAN协议的安全性进行说明。首先会针对协议中的安全属性进行阐述,然后呈现具体的实现细节,最后对一些LoRaWAN安全性上的设计进行解释。 LoRaWAN 安全属性 LoRaWAN的安全性设计原则要符合LoRaWAN的标准初衷,即低功耗、低复杂度、低成本和大扩展性。由于设备在现场部署并持续的时间很长(往往是数年时间),所以安全考虑一定要全面并且有前瞻性。LoRaWAN安全设计遵循先进的原则:标准的采取,算法的审查,以及端到端的安全机制。接下来我们会对LoRaWAN安全性的基本特性进行描述:包括双向认证、完整性校验和保密机制。 双向认证作为网络连接的过程,发生在LoRaWAN终端节点与网络之间。这确保只有真正的和已授权的设备才能与真实的网络相连接。 LoRaWAN的MAC和应用消息是“生来”经过认证、完整性保护和加密的。这种保护和双向认证一同确保了网络流量没有改变,是来自一个合法的设备,而不是“窃听者”,或者“流氓”设备。 LoRaWAN安全性进一步为终端设备和服务器之间的数据交换提供了端对端的加密机制。LoRaWAN是为数不多的支持端对端加密的IoT网络技术。传统的蜂窝网络中,加密发生在空中接口处,但在运营商的核心网络中只是把它当做纯文本来传输的。 因此,终端用户还要选择、部署和管理一个额外的安全层(通常通过某种类型的VPN或应用层加密如TLS来实现)。但这种方法并不适合应用在LPWAN技术中,因为这会额外地增加网络功耗、复杂性和成本。 安全策略 之前提到的安全机制依赖于经过完备测试和标准化的AES加密算法。加密社区已经对这些算法进行了多年的研究和分析,并且被美国国家标准技术研究所认定为适用于节点和网络之间最佳的安全算法。 LoRaWAN使用AES加密语句,并结合多个操作模式:用于完整性保护的CMAC、用于加密的CTR。每一个LoRaWAN终端具有一个唯一识别的128位AES Key(称为AppKey)和另外一个唯一标识符(EUI-64-based DevEUI),二者都应用于设备识别过程。 EUI – 64标识符的分配要求申请人从 IEEE 登记机关获得组织唯一标识符 (OUI)。同样地,LoRaWAN网络由LoRa 联盟分配的24位全球惟一标识符进行标定。 安全应用的负载: LoRaWAN? 应用负载的端对端加密发生在终端设备和服务器之间。完整性保护由跳频来实现: 空中跳频通过LoRaWAN提供的完整性保护,网络和服务器之间的跳频通过使用安全传输方案如HTTPS和VPNS来实现。 双向认证: 空中激活证明了终端设备和网络都具有AppKey的概念。这通过将一个AES-CMAC(使用AppKey)装载到设备的加入请求和后端接收器得到证明。 两个会话秘钥接着进行相互认证,一个用来提供完整性保护和LoRaWAN MAC指令和应用程序负载(NwkSKey)的加密,另一个用来提供端对端应用负载(AppSKey)的加密。 NwkSKey装载在LoRaWAN网络是为了验证数据包的真实性和完整性。从网络运营商的角度AppKey和AppSKey可以被隐藏,所以破解应用负载是不可能实现的。 数据完整性和隐私保护: LoRaWAN通信使用两个会话秘钥进行保护。每个负载由AES-CTR加密,并且携带一个帧计数器(为了避免数据包回放),一个消息完整性代码(MIC)和AES-CMAC(为了避免数据包被篡改)。下图是LoRaWAN包结构示意图。 安全性事实与谬论: LoRaWAN设备的物理安全: AppKey和衍生而来的会话秘钥会持续的保存在LoRaWAN设备中,它们的安全性依赖于设备的物理安全。一旦设备受到物理损害,这些秘钥存在防篡改存储器中从而受到保护,并且很难提取。 密码学: 一些资料指出LoRaWAN?密码只使用了XOR而并非AES。事实上,如之前所提到的,AES用在了标准化CTR模式,这利用了XOR加密操作(还有CBC等许多其他模式)。这通过给每个分组密码分配一个惟一的AES码强化了AES算法。 会话秘钥分布: 由于AppSKey 和NwkSKey从同一个AppKey生成,可以说如果LoRaWAN运营商获得了AppKey,它能够推导出AppSKey从而解码网络。 所以为了避免这种情况的发生,服务器要对AppKey的存储进行管理,双向认证和密钥推导的过程可以由运营商以外的实体进行操作。为了给运营商额外的灵活性,LoRaWAN接下来的新版本协议(1.1)会定义两个主秘钥,一个用于网络(NwkKey),一个用于应用(AppKey)。 后端接口安全: 后端接口包括网络和应用程序服务器之间控制和数据信号。HTTPS和VPN技术用于保护这些关键的基础设施元素之间沟通的安全性。 实现和部署安全: LoRa联盟一直在确保其协议和架构规范的安全性,但是解决方案的总体安全性还要依赖于具体的实现和部署方式。所以安全问题需要各个环节的配合,制造商、供应商、运营商都需要参与当中。 注解 1 AES – […] Read more.
基于LoRa的化工企业人员定位解决方案
一、行业背景 2017年5月13日河北省沧州市利兴特种橡胶股份有限公司发生氯气泄漏事故,事故造成2人死亡、25伤。 2019年3月21日,江苏天嘉宜化工有限公司发生爆炸事故,事故造成47人死亡、90人重伤。   化工企业安全事故历历在目,危害极大。牵动人心的伤亡数字,对应着一个个不幸的破碎家庭。 生命大于天,国家应急部、工信部对此相当重视。各地应急管理部颁布政策推动工业互联网+的安全生产试点建设方案落地。据不完全统计,目前已有河北、内蒙、浙江、江苏、山东、安徽等多个省市地区政府颁布了相关政策文件,希望通过智能化人员定位系统来提升企业安全生产管控水平。   考虑到化工厂品种多,行业复杂,工艺各不相同。且环境恶劣,危险性高,厂区广阔,人员较多,稳定性要求高等特点,基于LoRa技术+4G/5G通信搭建化工企业人员定位系统。 二、方案介绍:   方案拓扑图如下 以人员定位技术为核心,整合访客管理、出入口控制、地图、人脸识别、视频监控数据采集等各种管控技术,提供精准实时定位、轨迹查询、货物跟踪等功能,实现企业安全生产管理智能化。   三、方案优势: 1.使用化工企业人员定位系统,可视化图形展示,管理人员可以远程不受时间地点限制,实时查看、调取所需信息,提升工作效率,降低安全风险。 2.ogc305工业级LoRa网关采用国内领先的高性能8通道顶级芯片,支持半双工/全双工传输,性能强大。 3.工业级品质配件,金属机壳无风扇散热,-45℃-70℃极端环境稳定运行,全程无线传输、部署,超低功耗设计,行业最低,且发送频率灵活可调,维护简单快捷。 4.支持IPSEC/VPN隧道技术,支持OPENVPN,拥有全融级别的安全策略。 5.内置看门狗芯片设备异常自恢复、VRRP多重链路备份、ICMP探测、信号检测、LCP链路检测、KEEPLIVE心跳检测、断线自动重连、同步支持4G/5G和有线双重链路,互相备份,断电也不怕,完美应用于无人值守环境   定位信标特点: IP68防护等级 粉尘防爆+气体防爆双认证 低功耗,续航时间8年以上;防爆;高精度 识别卡特点: 粉尘防爆+气体防爆双认证 体积小巧、多色可选; 超声波密封、磁吸充电;功耗低 来源:东用科技 Read more.
LoRa无线温湿度监测预警系统
前景 在当今发展社会中人们越来越重视产品生产、物品管理和仓库存储环节,很多仓库存储非常重要的物质,如:烟叶、纺丝、药材、食品等。使用到温湿度监测系统的行业有冷链运输、医药行业、实验室领域、农林畜牧、食品冷库、机房环境温湿度监测等。随着我国科技的快速发展和自动化程度的提高,仓库管理技术也将得到进一步的改进。21世纪随着电子计算机的普及,温湿度的监测也进入了自动化。在温湿度监测中,目前采用的通信技术主要有RS485、ZigBee、LoRa等。 传统温湿度监测系统存在大量电缆铺设、电缆暴露、通信线路过长等问题,因而导致组网时费时费电、抗干扰能力弱及开发困难,无法满足各行各业如今对环境温湿度的需求。而LoRa在相同的功耗下比其它无线方式传播的距离更远,实现了低功耗和远距离的统一,在同样的功耗下比传统的无线通信射频通信距离扩大3-5倍,在温湿度监测中拥有着明显优势。 系统组成 系统概述 温湿度监测预警系统采用科杰迅LoRa采集器和LoRa无线网关实现监控区域内的全覆盖,同时在合储区各个数据采集节点安装科杰迅温湿度传感器,实现对监测区域的温湿度数据动态全采集,并根据仓储环境实际需求将温湿度数据监测、采集、传输和预数据传输到大数据平台后,再进行数据分析和优化,然后精准推动到WEB服务系统。 系统平台 系统优势 实时数据采集:对各监测点位的数据进行实时采集并传送至云平台,进行数据分析并通过大数据看。 提高预警、智能分析:实时采集的数据和设定的阈值进行比较,可提前预警,留给相关处置人够的时间消除安全隐患。 历史数据统计:每一个监测点位的秒、分、时、日历史数据都可以被记录在监控节点中单独的文件中,从而可以更加迅速的查看历史曲线点的历史和实时数据可以同时在数据记录曲线浏览,历史记录的最小间隔单位是秒,且根据不同的显示方式进行统计分类存储,保证在查看年度报表时无需重新计算,提高显示谏度。 来源:科杰迅物联网 Read more.