LoRa物联网中文学习资料汇总

LORA 射频自组网 两级中继设计方案

基于sx1276lora模块,进行多个模块之间自组网,组网形式为1个集中器加多个终端。模块之间距离较远时,集中器无法直接与某个终端进行通信,其他终端本身可作为中继给该终端作为中继与集中器通信。lora调制方式,发送数据为星型通信方式,为自组网提供了便利。终端接收心跳存储typedef strucuint32_t Id;//接收的Iuint8_t Rssi;//信号强度}RECV_TERMINAL_T;...了解详情

走近LoRa之一:深入了解物联网,从LoRa开始

作者:甘达 来源: 广州朗威物联网连接存在挑战,催生LPWA目前物联网连接的应用场合存在几个痛点:①通信距离,大部分设备布局在复杂的建筑环境或者人员稀少的地方,传统无线技术难以穿透或者抵达;②电池供电,很多物联网应用场合并没有持续电力供应的条件,比如地磁传感器、自来水表。主流无线通信方式对比物联网应用中的无线技术,除运营商广域网的GPRS、3G/4G以外,还有局域网短距离的ZigBee、Wi-F...了解详情

图文介绍LoRa技术特点和系统架构

一 技术特点1、LoR2013年8月,美国升特公司(Semtech)向业界发布了一种新型的Sub-1GHz频段的扩频通信芯片,最高接收灵敏度可达-148dBm,主攻远距离低功耗的物联网无线通信市场。该技术主要工作在全球各地的ISM免费频段(即非授权频段),包括主要的433、470、868、915MHz等。与其他传统的Sub-1GHz芯片相比,LoRa芯片最高接收灵敏度提高20~25dB,体现在应用上就是拥有5~8倍传输距离的提升。LoRa技术本质上是扩频调制技术,同时结合了数字信号处理和前向纠错编码技术。此前,扩频调制技术具有长通信距离和高鲁棒特性,在军事和空间通信领域已经应用了几十年,而LoRa的意义在于首先利用扩频技术为工业产品和民用产品提供低成本的无线通信解决方案。前向纠错编码技术是给待传输数据序列中增加一些冗余信息,数据在传输进程中注入的错误码元在接收端就会被及时纠正。前向纠错编码技术可以减少数据包需要重发的需求,而且在解决由多径衰落引发的突发性误码中表现良好。一旦数据包分组建立起来,并注入前向纠错编码以保障可靠性,这些数据包就将被送到数字扩频调制器中。这一调制器将分组数据包中每一比特时间划分为众多码片,而LoRa调制码片的可配置范围为64~4 096码片/比特。通过使用高扩频因子,LoRa可将小容量数据通过大范围的无线电频谱传输出去。当用户通过频谱分析仪测量时,这些数据看上去像噪音,但区别在于噪音是不相关的,而数据具有相关性。基于这点,数据可以从噪音中提取出来。扩频因子越高,越多的数据可从噪音中提取出来,接收灵敏度就可以达到更高。因此LoRa芯片的接收灵敏度最高可达-148dBm,在20dBm的发射功率下,LoRa调制的链路预算可达168dB。2、LoRaWAN在传统的广域连接应用中,主要借助电信运营商提供的蜂窝网络进行连接,工业、能源、交通、物流等各行业广泛采用蜂窝网络实现互联。但仍有大量的设备应用是现有蜂窝网络技术无法满足的,比如水、电、气、热等计量表,市政管网、路灯、垃圾站点等公用设施,大面积畜牧养殖和农业灌溉,广泛布局且环境恶劣的气象、水文、矿井、山体数据采集,以及偏僻的户外作业等。这些类型终端若采用现有运营商蜂窝网络进行联网,可能遇到如下问题。1、信号覆盖不足:很多设备布局在人口稀少或环境复杂的区域,运营商网络覆盖盲区或信号强度不足,难以保障数据的稳定传输。2、功耗高:大量设备需要电池供电,若采用蜂窝网络则需频繁更换电池,这在很多恶劣环境下很难实现。3、费效比低:设备单次传输数据量极小,而且传输频次很低。目前蜂窝网络为高带宽设计,采用蜂窝网络要占用网络和码号资源,还会产生包月流量费用。基于以上原因,低功耗广域网技术(Low Power Wide Area Network,LPWAN)成为弥补物联网网络层短板的最佳选择。2015年3月,由Semtech牵头成立了LoRa Alliance(以下简称LoRa联盟),联盟是一个开放的非盈利性组织,目的在于加速LoRa技术全球商用化,主要发起成员还包括美国IBM、Cisco、法国Actility、荷兰皇家电信、瑞士电信等知名企业。联盟发布的LoRaWAN协议将LPWAN分成了三部分,包括节点应用、通信服务(模组和基站供应商)、云服务,数据传输过程中的通信层包括两级加密,数据通信更为安全。截止到2016年10月,联盟成员数量高达400多家,其中国家级的运营商有27家,新增运营商有法国Proximus、英国Orange、美国Comcast、日本软银、韩国SK电信、印度TATA电信等。同时,LoRa的产业链中还包括大量终端硬件厂商、模块网关厂商、软件厂商、系统集成商等,构成了完整的LoRa生态系统,大大促进LoRa技术的快速发展与生态繁盛。二 系统架构1、网络架构目前,基于L oRa技术的网络层协议主要是LoRaWAN,也有少量的非LoRaWAN协议,但是通信系统网络都是星状网架构,以及在此基础上的简化和改进。主要包括以下3种。(1)点对点通信。一点对一点通信,多见于早期的LoRa技术,A点发起,B点接收,可以回复也可以不回复确认,多组之间的频点建议分开,如图1所示。单纯利用LoRa调制灵敏度高的特性,目前主要针对特定应用和试验性质的项目。优点在于最简单,缺点在于不存在组网。图1 点对点通信(2)星状网轮询。一点对多点通信,N个从节点轮流与中心点通信,从节点上传,等待中心点收到后返回确认,然后下一个节点再开始上传,直到所有N个节点全部完成,一个循环周期结束,如图2所示。该结构本质上还属于点对点通信,但是加入了分时处理,N个从节点之间的频点可以分开,也可重复使用。优势在于单项目成本低,不足之处是仅适合从节点数量不大和网络实时性要求不高的应用。图2 星状网轮询(3)星状网并发。如图3所示,一点对多点通信,多个从节点可同时与中心点通信,从节点可随机上报数据,节点可以根据外界环境和信道阻塞自动采取跳频和速率自适应技术,逻辑上网关可以接收不同速率和不同频点的信号组合,物理上网关可以同时接收8路、16路、32路甚至更多路数据,减少了大量节点上行时冲突的概率。该系统具有极大的延拓性,可单独建网,可交叉组网,LoRa领域内目前主要指的是LoRaWAN技术。图3 星状网并发2、系统组成点对点通信和星状网轮询的系统组成比较简单,两端都是节点,分为主从。在主节点收到从节点上行数据后会发下行确认帧给从节点,然后从节点进入休眠,工作模式比较简单。这里主要对LoRaWAN星状网并发结构进行展开说明,LoRaWAN系统主要分为三部分:节点/终端、网关/基站,以及服务器,如图4所示。图4 LoRaWAN系统架构示意图节点/终端(Node):LoRa节点,代表了海量的各类传感应用,在LoRaWAN协议里被分为Class A、Class B和Class C三类不同的工作模式。Class A工作模式下节点主动上报,平时休眠,只有在固定的窗口期才能接收网关下行数据。Class A的优势是功耗极低,比非LoRaWAN的LoRa节点功耗更低,比如针对水表应用的10年以上工作寿命通常就是基于Class A实现的。ClassB模式是固定周期时间同步,在固定周期内可以随机确定窗口期接收网关下行数据,兼顾实时性和低功耗,特点是对时间同步要求很高。Class C模式是常发常收模式,节点不考虑功耗,随时可以接收网关下行数据,实时性最好,适合不考虑功耗或需要大量下行数据控制的应用,比如智能电表或智能路灯控制。网关/基站(Gateway):网关是建设LoRaWAN网络的关键设备,目的是缓解海量节点数据上报所引发的并发冲突。主要特点如下:1)兼容性强,所有符合LoRaWAN协议的应用都可以接入;2)接入灵活,单网关可接入几十到几万个节点,节点随机入网,数目可延拓;3)并发性强,网关最少可支持8频点,同时随机8路数据并发,频点可扩展;4)可实现全双工通信,上下行并发不冲突,实效性强;5)灵敏度高,同速率下比非LoRaWAN设备的灵敏度更高;6)网络拓扑简单,星状网络可靠性更高,功耗更低;7)网络建设成本和运营成本很低。服务器(Server):负责LoRaWAN系统的管理和数据解析,主要的控制指令都由服务器端下达。根据不同的功能,分为:网络服务器(Network Server)与网关通信实现LoRaWAN数据包的解析及下行数据打包,与应用服务器通信生成网络地址和ID等密钥;应用服务器(Application Server)负责负载数据的加密和解密,以及部分密钥的生成;客户服务器(Client Server)是用户开发的基于B/S或C/S架构的服务器,主要处理具体的应用业务和数据呈现。LoRaWAN系统的优势包括:覆盖范围广,节省网络优化和施工成本,减少现场施工复杂度;服务器端鉴权可实现交叉覆盖,减少覆盖盲点;服务器端统筹管理,提高信道利用率,增加系统容量; 网关多路并发减少冲突,支持节点跳频,增加系统容量;节点速率自适应(Adaptive Data Rate)降低功耗和并发冲突,增加容量;安全性高,两级AES-128(Advanced Encryption Standard-128)数据加密;星状网络结构提高鲁棒性;LoRaWAN协议标准化。三、展望未来LoRaWAN的未来非常值得期待,短期可预见的是基于LoRaWAN的定位技术。2016年,Semtech宣布了LoRaWAN支持定位的应用,目前有少量企业从事利用RSSI为基础附加参数修正的定位研究,但精度都不高。而基于Time Difference of Arrival(TDOA)的多LoRaWAN基站测量定位技术更具有商用化前景,理论精度可达50m以内,实用性更高。依照普通LoRaWAN节点平均休眠电流3μA、时间同步、无需增加其他定位芯片的特性,LoRaWAN完全有希望大规模代替现有的某些定位技术。较远的距离+低功耗+低成本+可室内室外定位的组合,是LoRaWAN有别于其他定位技术的优势。2016年是窄带物联网技术国内商用化元年,未来对LoRaWAN会形成一定挑战和竞争,而LoRa相对窄带物联技术已有成熟商用案例。窄带物联技术拥有运营商的强力支持,但LoRaWAN不会被轻易取代,具有某些方面的先天优势。LoRaWAN允许企业搭建属于自己的私有网络,很多企业并不愿意把私有数据给别人,所以在投入成本可接受的情况下,企业宁愿部署自己的私有网络并独立运营,私有网络的诱惑力巨大。物联网技术的发展日新月异,每种技术路线都有其优势领域和不足之处,未来的技术接受程度如何,关键还是要靠市场来进行选择,但最终受益的肯定是整个产业链和用户。目前,相对于NB-IoT,LoRa是当前最成熟、稳定的窄带物联网通讯技术,其自由组网的私有网络远优于运营商持续不断收费的NB网络,且LoRa一次组网终身不需缴费。但是应用LoRa进行物联网通讯开发难度大、周期长、进入门槛高。据了解,为降低物联网行业创业者进入门槛,协成智慧提供了一整套成熟LoRaWAN源代码+LoRa Gateway网关定制方案,极大缩减了创业者在物联网链路调通上所耗费的半年周期与巨额开发代价,便于快速切入物联网具体应用,打造属于自己的独立物联网运营品牌。了解详情

LoRa协议下的业务模式介绍

在低功耗广域网(LPWAN)或窄带物联网应用领域里,LoRa技术无疑是的最热门的技术之一。伴随着物联网的低功耗广域连接需求的发展,LoRa技术也给中国物联网市场带来了新的机遇。由于LoRa的开放性和灵活性,在市场应用上形成了各种各样的业务模式。小编就从LoRa协议的角度来看下LoRa市场的一些业务模式。LoRa协议LoRa™ (Long Range,远距离)是一种调制技术,与同类技术...了解详情

NB-IoT火热背后,窥探嵌入式设计内幕

来自沃达丰全球的市场调研显示,全球17个国家,1096企业高管的访谈的结果是三大趋势明显:1、越来越多的企业部署IoT业务,今年60%的企业正在使用或即将部署IoT业务,前三年的数据是12%,22%,36%,几乎每年翻一番;2、越来越多的企业将预算放到IoT,今年24%的企业被用于投资IoT业务,这与云、移动通信和大数据都相关。3、越来越多的企业从IoT业务中获得投资回报,63%的企业部署IoT获...了解详情

创建你自己的私有 LoRa 网络

有大量关于 LoR的讨论,低功耗、广域网保证了几公里范围内的通信,因此非常适合网联网通信。电信运营商正在推出 LoRa 网络,由于 LoRa 在开放的频谱范围内运行,你还可以设置自己的网络。本文讨论了构建私有 LoRa 网络,以及如何使用网络将数据从 ARM mbed 终端节点发送到云端。关于 LoRa 与 LoRaWAN 的注意事项:从技术上讲,在本文中我们正在构建一个 LoRaWAN 网络。...了解详情

采用LORA 技术设计物联网应用

各种无线技术的产品连接到物联网(IoT)。每种技术适合不同的应用,需要设计人员仔细考虑因素,如距离和数据传输速率,成本,功耗,体积和外形。本文将介绍的LoRa协议,其优势比其他协议,并讨论多项产品和开发工具包,使工程师可以快速上手开发基于LoRa系统。无线物联网权衡考虑因素每个无线技术既有长处和短处。标准的Wi-Fi,例如,可以传输大量高速数据的,但它有一个有限的范围内。蜂窝网络结合高速和长距离,...了解详情

锐米通信:支持高校物联网研究 锐米开源LoRa系统

1 一个成功的故事:伯克利大学与UNI47岁的大叔–UNIX(尤其是它的后辈Linux和BSD UNIX)是这个星球上最有生命力的操作系统,从巨型机,到手机,都有它们默默工作的舞台。同时,美国加州大学伯克利分校显然对UNIX有着非常重要的贡献1)1975年,比尔.乔伊(不是比尔.盖茨,他1975年刚从哈佛退学,以卖BASIC为生)将PASCAL编译系统整合在UNIX系统里,并且以BSD命名进行...了解详情

LoRa网络中的传感终端

物联网的应用中少不了传感器,有各种各样不同类型的传感器,广泛应用于各个行业中的电子产品或终端上。物联网传感器市场规模有多大,下面是市场调研机构对物联网传感器市场的预测Markets and Markets预测,到2022年物联网传感器市场(传感器主要有压力、温度、湿度、磁力计、加速度计、陀螺仪、惯性、图像等)将达384.1亿美元,2016年至2022年之间的复合年增长率为42.08%。推动物联网...了解详情

基于LoRaWAN的远程抄表系统

作者:金卡高科技股份有限公司 张恩满 赵春焕 钟晨 丁渊明 聂西利摘要随着无线通讯技术的不断发展,智能燃气抄表也有了更多的选择。首先分析了LoRa技术的特点及LoRaWAN协议的网络架构,并与其他无线通讯技术进行对比,最后以LoRaWAN燃气表为例分析了LoRaWAN协议在智能燃气抄表领域的可应用性。关键词LoRa技术 ;LoRaWAN燃气表;远程抄表系统1、LoRa技术LoRa 是由Semtech公司开发的一种基于1GHz以下的新型超长距低功耗数据传输技术。它使用线性调频扩频调制技术,即保持了像FSK(频移键控)调制相同的低功耗特性,又明显地增加了通信距离,同时提高了网络效率并消除了干扰,即不同扩频序列的终端即使使用相同的频率同时发送也不会相互干扰[1][2],因此在此基础上研发的集中器/网关(Concentrator/Gateway)能够并行接收并处理多个节点的数据,大大扩展了系统容量。随着LoRa的引入,嵌入式无线通信领域的局面发生了彻底的改变。这一技术改变了以往关于传输距离与功耗的折衷考虑方式,提供一种简单的能实现远距离、长电池寿命、大容量、低成本的通讯系统[1]。LoRa主要在全球免费频段运行(即非授权频段),包括433、868、915 MHz等。LoRa网络主要由终端(内置LoRa模块)、网关(或称基站)、服务器和云四部分组成,应用数据可双向传输。LoRa的优势主要体现在以下几个方面:1)高接收灵敏度,功耗低,接收灵敏度达-148dbm,接收电流仅10mA,睡眠电流200nA。2)系统容量大,每个网关每天可以处理500万次各节点之间的通信(假设每次发送10Bytes,网络占用率10%)。如果把网关安装在现有移动通信基站的位置,发射功率20dBm(100mW),那么在建筑密集的城市环境可以覆盖2公里左右,而在密度较低的郊区,覆盖范围可达10公里。3)基于终端和集中器/网关的系统可以支持测距和定位,对距离的测量是基于信号在空中的传输时间,而定位则基于多点(网关)对一点(节点)发出的信号在空中传输时间差的测量[3]。其定位精度可达5m(假设10km的范围)。4)支持自组网,可以实现节点与集中器直接组网连接,构成星型网络。2、LoRaWAN标准LoRa技术在物理层上实现了长距离点对点通信,如果没有协议栈的管理设计,LoRa的使用只能限于简单的数据收发,无法组成高效复杂的通讯网络。2015年LoRa联盟发布LoRaWAN技术规范,成为LPWAN(低功耗长距离广域网)的重要技术标准之一[4]。LoRaWAN定义了网络的通讯协议和系统架构,而LoRa物理层能够使长距离通讯链路成为可能。完全符合LoRaWAN标准的通讯网关可以接入5到10公里内上万个无线节点,其效率远远高于传统的点对点轮询通讯模式,也能大幅度降低节点通讯功耗[5]。LoRaWAN自下而上设计,为电池寿命、容量、距离和成本而优化了LPWAN(低功耗广域网)。对于不同地区LoRaWAN给出了一个规范概要,以及在LPWAN空间竞争的不同技术的高级比较[6]。图1 LoRaWAN系统架构图2 LoRaWAN网络架构1)网络架构LoRaWAN采用星型网络架构,在网络中,节点与专用网关不相关联。相反,一个节点传输的数据通常是由多个网关收到[7]。每个网关将从终端节点所接收到的数据包通过一些回程(蜂窝、以太网等)转发到基于云计算的网络服务器。智能化和复杂性放到了服务器上,服务器管理网络和过滤冗余的接收到的数据,执行安全检查,通过最优的网关进行调度确认,并执行自适应数据速率等。2)网络容量LoRa基于扩频调制,使用不同扩频因子时,信号实际上是彼此正交。当扩频因子发生变化,有效的数据速率也会发生变化。网关利用了这个特性,能够在同一时间相同信道上接受多个不同的数据速率。为使自适应的数据速率工作,对称的上行链路和下行链路要求有足够的下行链路容量。这些特点使得LoRaWAN有非常高的容量,网络更具有可扩展性。用最少量的基础设施可以部署网络,当需要容量时,可以添加更多网关,变换数据速率,减少串音次数,可扩展6~8倍网络容量。LoRaWAN协议在2016年更新到了1.02版本,对于中国地区,LoRaWAN划分的通讯频段为470-510MHz,并将该频段划分为上行频段和下行频段两部分,上行频段共96个,带宽为125KHz,以200KHz的间隔从470.3MHz线性递增至489.33MHz,下行频段以相同方式划分,范围是500.3MHz-509.7MHz。同时,采用收发异频模式,下行信道的计算方法为上行信道号对48取模,所得值即为下行信道号[8]。3、基于LoRaWAN的燃气抄表应用近年来,随着城市化的快速发展,燃气表产销规模快速增长,如何对庞大且分散的燃气表进行及时、准确、有效的抄收成为燃气公司迫切需要解决的问题。传统的人工抄表需要挨家挨户地抄读燃气表,燃气表抄收人员将数据录入系统后才能生成账单。人工抄表的弊端越来越突出,主要表现在:抄表效率非常低,劳动强度非常大;错抄、估抄的情况严重,容易引起不必要的纠纷。人工抄表已经不能适应社会的发展,智能抄表成为未来的趋势。目前燃气公司对燃气表的通讯要求主要包括以下几点:日累积气量、事件上报、表具当前状态、月累积气量等,大部分数据较短,在几十字节以内,少部分指令,如读取月累积气量数据包长度达到一百五十字节左右。燃气公司对于用户所用气量数据实时性要求不高,每天上传3次完全可以满足结算需求,但对于燃气表低功耗的要求则比较严苛,对于锂电池供电的燃气表,要求电池寿命达十年,对于碱性电池供电的燃气表则要求四节碱性电池可以使用一年。结合现代楼体建筑向高层发展的趋势,一个中等小区大约有一到两千户,对智能抄表的灵活性、自由性提出了要求。LoRaWAN协议在LoRa技术功耗低、通讯距离远的优势基础上,规范了以LoRa做为长距离通信链路的物理层时网络的结构,适用于燃气抄表数据量少、通信距离远、对实时性要求不高的应用特点,同时满足了低功耗的要求,兼顾组网灵活简单、网络扩展方便、易于管理等特点。LoRaWAN协议采用星型组网,针对不同的扩频因子,数据包负载长度从51到223不等,且集中器作为透明传输使用,方便后期网络扩张。同时,LoRaWAN支持多信道通信、信道修改等,对于开放频段的无线设备,保障了长期通讯的稳定性,降低其他无线设备对终端的干扰。近年来燃气抄表领域对于LoRa技术的应用多是采用自主研发的通讯协议,采用被动唤醒、固定SF和发射功率等设计,通用性、抗干扰性差。被动唤醒的抄表方式要与手持机配合使用,终端为了支持这种抄表方式要频繁唤醒检测是否有手持设备,因此终端大部分唤醒是无用的,这部分功耗相当于被浪费,因此技术与协议的有效结合是解决智能燃气抄表的最好方案。4.基于LoRaWAN协议的燃气表远程抄表试验研究本文针对本公司独立研发的LoRaWAN无线智能远传燃气表(简称LoRaWAN燃气表)进行了通讯性能测试。该燃气表通信信道带宽设为125kHz,支持8个信道,采用Class A模式。为了在通信距离与终端功耗之间取得动态的平衡,该燃气表扩频因子及发射功率可调,针对不同的通讯条件自动调整,从而在保证抄表率的前提下降低终端功耗。为实现多LoRaWAN燃气表组网通讯,同时测试了本公司针对LoRaWAN燃气表研发的一体化的集中器与网络服务器(Network Server,简称NS)。集中器支持同时接收8个信道的数据,单个集中器可满足最少2000台终端设备的通讯需求,终端上行数据通过4G模块发送到NS。NS负责数据处理,在接收到集中器的上行数据后,经过鉴权等校验,合法数据解密后解析,其中应用数据输出到应用服务器,MAC命令生成回应。LoRaWAN燃气表作为通讯终端采用随机信道选择方式进行干扰规避。每次终端在进行上行数据发送或者数据重发时,都会在8个信道中随机选择一个信道进行接入。为了保障通讯安全,通讯采用动态密钥,由终端和NS各提供一个随机数,共同生成密钥,保障密钥的安全性,同时加入自动离网机制,在通讯达到一段时间后,自动离线,重新入网并生成密钥。为了最大限度地节约终端功耗,在终端入网后,NS主动向终端发送链路自适应命令,将终端的射频参数调整到最合适的状态,其调整依据如图3所示,集中器上传终端当前通讯使用的射频参数及数据信噪比(SNR),网络服务器根据SNR计算终端当前链路质量下最合适的射频参数,若与终端当前使用的射频参数不同,则下发链路自适应命令,调整终端射频参数,若相同则不下发该命令[9]。图3 扩频因子与信噪比对照通过拉距测试、实地抄表测试及长期抄表测试来验证LoRaWAN燃气表及其组网设备的数据抄收能力,具体实验条件1)拉距测试拉距测试条件如图4所示,集中器放置在图4起点位置,集中器摆放如图5所示,两地直线距离为4.4公里,该区域多为厂房等低层建筑分布,相比城市建筑较为稀疏。图4 拉距测试距离示意图图5 集中器摆放位置在4.4公里处,使用4台样表进行抄表实验,手动触发样表发送ConfirmedData,能够接收到网络服务器下行的ACK数据,每个样表发送8次数据,通讯成功率为100%。2)实地抄表测试为了验证LoRaWAN燃气表在城市住宅区的通讯性能,在杭州市江干区和达城小区内进行实地抄表实验,该小区楼宇地上33层,地下两层,实验涵盖6幢楼体,实验时由测试人员手动触发样表发送ConfirmedData,能够接收到网络服务器下行的ACK数据即为通讯成功,实验条件如下:表具放置点:如图6所示,在号楼的1层和33层最隐秘的位置,●所示位置,以及所有楼栋的地下1层和地下2层;集中器安装位置:如图6所示:A(3号楼的7层),B(6号楼的天台);数据库位置:公司服务器;抄表率计算方法:抄表率=抄到数据的表的数量÷表具总数。测试抄表情况如下:不管集中器在A或B位置,楼层中的表具抄表率达100%;在A位置时,所有楼栋的地下1层和2层都能抄到,抄表率依旧为100%,在B位置时,3号和4号楼的地下1层、地下2层都能抄到,其余楼栋地下抄不到。图6 设备摆放示意图图7 集中器位置3)长期抄表测试为了检验LoRaWAN燃气表长期抄表情况,在本公司内部进行了长期抄表测试,实验样品数为500个样表,集中器放置在公司楼顶,如图7所示,楼高为四层,表具放置在公司员工宿舍洗手池下,模拟实际安装使用情况,如图8所示,位置为1~4楼。图8 被测表具位置图9 某时段抄表率统计实验期间表端间隔8小时上传一次实时气量数据,一次抄表成功率计算方法为:一次抄表成功率 = 每天实际上传数据量/每天应上传数据量,日抄表成功率计算方法为:日抄表成功率 = 该日成功上传数据的表具数量/实验表具总数量,以下为实验数据:以上实验数据表明,LoRaWAN表通讯距离良好,在低层建筑分布地区通讯距离能够达到4.4公里以上;在一般城市高层住宅内能够保证良好通信;在长期测试环境下,日抄表率为100%,一次抄表率在94%~100%之间。5、总结本文介绍了LoRa的技术特点以及LoRaWAN协议的网络架构,并分析了燃气抄表的应用场景需求,分析了几种无信通信技术的特点,指出LoRaWAN协议针对该需求的优异性。同时介绍了本公司LoRaWAN燃气表研发及实验情况,总结分析实验数据可以发现基于LoRaWAN协议的广域低功耗射频通讯技术能够实现覆盖范围广、抄收成功率高,完全适用于燃气计量自动抄表应用,另外其成本低廉的特点更适合于城市燃气居民用户抄表。参考文献...了解详情

LoRaWAN 一些概念解释

本文对LoRaWAN中的一些大家不理解的概念进行说明。1 占空比(DutyCycle)维基百科-占空比中这样说:占空比(Duty Cycle)在电信领域中有如下含义:在一串理想的脉冲序列中(如方波),代表1的正脉冲的持续时间与脉冲总周期的比值。例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。在一段连续工作时间内脉冲占用的时间与总时间的比值。在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。在周期型的现象中,现象发生的时间与总时间的比。对于方波或其他应用场合,通常称为责任周期或工作周期(Duty Cycle)。在这里可以这样理解:节点发射LoRaWAN数据的时间1与发射周期的比值就是占空比。占空比是周期的另一种表示方式,通过比值来动态约束节点的发送周期。节点在本周期结束后才可以开始下一个周期。例如:470频段占空比 1%,节点使用该频段发送一组数据耗时 10 ms,那么这个节点的本次发送周期为T1。节点在本周期结束,也就是 T1−10ms 以后才可以再次发送数据。T1=101%=1000ms需要等待 1000−10=990ms才可以再次发送。计算过程中注意时间单位2 一致性校验码(MIC)LoRaWAN中的MIC是CMAC的四个最低有效字节,这一点在LoRaWAN协议中有说明:The MIC is calculated as follows [RFC4493]:msg = MHDR | FHDR | FPort | FRMPayloadcmac = aes128_cmac(NwkSKey, B 0 | msg)MIC = cmac[0..3]CMAC则是AES中的一个算法,开发人员直接调用AES库函数即可,而AES在openssl中有实现。CMAC描述见:维基百科-CMACRFC4493来源:CSDN 作者:qingchuwudi了解详情

物联网技术标准学习之NB-IOT和LoRa详解

物联网的快速发展对无线通信技术提出了更高的要求,专为低带宽、低功耗、远距离、大量连接的物联网应用而设计的LPWAN(low-power Wide-Area Network,低功耗广域网)也快速兴起。NB-IoT与LoRa是其中的典型代表,也是最有发展前景的两个低功耗广域网通信技术。NB-IoT和LoRa两种技术具有不同的技术和商业特性,所以在应用场景方面会有不同。这里会针对二者的区别进行阐述,并且...了解详情

LoRa Gateway 源码工程梳理

本文作者twowinter,转载请注明作者http://blog.csdn.net/iotisan/1.核心库:libloragw这个目录包含了编译一个多通道基站库所需的源码。编译之后就会生成固定链接的libloragw.a。lora_gateway\libloragw\tst目录下还有不同子模块的测试程序。1.1 HAL介绍这部分也就是LoRa集中器的HAL层(LoRa concentrator Hardware Abstraction Layer),它是个C库,让大家使用少量的C函数就可以对LoRa集中器芯片进行配置硬件,以及收发数据包。LoRa集中器是数字化的多信道多数据包标准的射频芯片,使用LoRa或者FSK模式进行收发数据。1.2 HAL的组成这个库是由6(8)个模块组成:loragw_hal主模块,包含高等级函数来配置和使用集中器loragw_reg这个模块用来操作集中器的寄存器loragw_spi通过SPI接口来操作集中器的寄存器loragw_aux包含一个主机需要的wait_ms函数,用于指定ms的延时loragw_gps通过基准时基来同步集中器内部计数,例如例程中的GPS授时。loragw_radio配置 SX125x 和 SX127x。loragw_fpga (only for SX1301AP2 ref design)SX1301AP2参考设计才需要,用于操作FPGA的寄存器,以及配置FPGA功能。loragw_lbt (only for SX1301AP2 ref design)SX1301AP2参考设计才需要,用于配置和使用LBT功能。1.3 软件编译1.3.1 软件细节这个库按照ANSI C99进行编写。loragw_aux模块中的ms精确延时含有POSIX格式函数,嵌入式平台可以用硬件定时器进行重写。1.3.2 编译选项library.cfg 中 DEBUG_xxx 如果置为1,则会用 fprintf 输出对应的调试信息。1.3.3 编译流程对于交叉编译,需要设置 Makefile 中的 ARCH 和 CROSS_COMPILE 变量,或者在 shell 环境中,使用正确的工具链名字和路径。例如:export PATH=/home/foo/rpi-toolchain/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin:$PATH export ARCH=arm export CROSS_COMPILE=arm-linux-gnueabihf-libloragw目录下的Makefile会解析 library.cfg 文件,产生一个config.h的C头文件,包含 #define 选项。那些选项会使能或禁用loragw_xxx.h 文件和 *.c 原文件中的代码。library.cfg 也用来直接选择动态链接库。1.3.4 导出如果想在其他系统使用编译后的库,你需要导出这些文件:libloragw/library.cfg -> 根配置文件libloragw/libloragw.a -> 静态库libloragw/readme.md -> license要求libloragw/inc/config.h -> 从 library.cfg 衍生出的C配置标志libloragw/inc/loragw_*.h -> 你需要用到的头文件 (例如. _hal and _gps)在这个库链接到你的应用之后,只有 license 文件要求在程序文件中拷贝和保留。1.4 硬件条件1.4.1 硬件版本loragw_reg 和 loragw_hal 是针对Semtech硬件编写的特殊版本:Semtech SX1301 芯片Semtech SX1257 or SX1255 收发器如果硬件版本和库版本不匹配的话,这个库将无法使用。你可以用 test_loragw_reg 来测试软硬件是否匹配。1.4.2 SPI通信loragw_spi 的SPI函数适合平台相关的,如果你用别的SPI接口可能需要重写这个函数:SPI master matched to the Linux SPI device driver (provided)SPI over USB using FTDI components (not provided)native SPI using a microcontroller peripheral (not provided)你可以用 test_loragw_spi 来测试SPI通信。1.4.3 GPS接收为了使用库中的GPS模块,主机必须要通过串口连接GPS接收器,串口连接必须以“tty”设备出现在 /dev/ 目录,启用这个程序的用户必须用读写这个设备的权限。使用 chmod a+rw 来允许所有用户能操作指定的tty设备,或者使用sudo来运行你的程序(例如. sudo ./test_loragw_gps)。当前版本,库只从串口读取数据,在GPS接收器上电后会收到他们发出NMEA帧 以及 u-blox 模块私有的 UBX 消息。GPS接收器必须在发出PPS脉冲后发出UBX消息,让内部集中器的时间戳可以用GPS时基校准。如果GPS接收器发出了GGA NMEA语句,gateway则可以进行3D定位。1.5 使用1.5.1 设置软件环境对一个典型应用,你需要这么做:源码中包含 loragw_hal.h编译时链接 libloragw.a 静态库文件由于 loragw_aux 的依赖关系,需要链接 librt 库如果应用需要直接访问集中器配置寄存器的话(例如做些高级配置),你还需要这样做:源码中包含 loragw_reg.h1.5.2 使用软件API要在你的应用中使用 HAL,需要遵守如下规则:在射频启动之前需要配置好 radios path 和 IF+modem path只有在调用了 start 函数之后,配置才会传送给硬件只有在 radio 使能,同时IF+modem 使能,以及集中器启动后,才能接收数据包。只有在 radio 使能,以及集中器启动后,才能发送数据包。改变配置之前,必须停止集中器。一个对HAL的典型应用流程图如下:<configure the radios and IF+modems><start the LoRa concentrator>loop {<fetch packets that were received by the concentrator><process, store and/or forward received packets><send packets through the concentrator>}<stop the concentrator>/!\ 注意,lgw_send 在LoRa集中器仍然发包时,或者即使在准备开始发包时,是非阻塞立即返回。当有数据包在发送时,将无法收到任何数据。你的应用需要考虑发包的时长,或者在尝试发包前检查下状态(使用 lgw_status)。当前一包未完成时立即发一包,会导致前一包无法发送,或者发送部分(会导致接收端出现CRC错误)。1.5.3 调试模式为了调试程序,可以激活调试信息后( 在 library.cfg 中设置 DEBUG_HAL=1 ),编译 loragw_hal 函数。这样就会输出很多细节信息,包括stderr的错误细节信息。2.帮助程序工程中的这些程序提供了一些示例,应该如何使用HAL库。帮助系统构建者单独测试不同部分。2.1. util_pkt_loggerThis software is used to set up a LoRa concentrator using a JSON configurationfile and then record all the packets received in a log file, indefinitely, untilthe user stops the application.这个软件用来让LoRa集中器使用JSON配置文件,以及记录所有的包于一个log文件,除非用户停止这个应用。2.2. util_spi_stressThis software is used to check the reliability of the link between the hostplatform (on which the program is run) and the LoRa concentrator register filethat is the interface through which all interaction with the LoRa concentratorhappens.这个软件用来检测主CPU与LoRa协调器寄存器文件的连接的稳定性。2.3. util_tx_testThis software is used to send test packets with a LoRa concentrator. The packetscontain little information, on no protocol (ie. MAC address) information butcan be used to assess the functionality of a gateway downlink using othergateways as receivers.这个软件用来做发包测试。包里没有协议信息,但可以用来检测基站下行功能,使用另一台基站来做接收。2.4. util_tx_continuousThis software is used to set LoRa concentrator in Tx continuous mode,for spectral measurement.这个软件用来设置LoRa集中器为持续TX模式,用于频谱测试。2.5. util_spectral_scanThis software is used to scan the spectral band in background, where the LoRa这个软件用来扫描基站工作环境的频段。2.6. util_lbt_testThis software is used to test "Listen-Before-Talk" channels timestamps.这个软件用来测试“Listen-Before-Talk”的信道时间戳。3. 帮助脚本3.1. reset_lgw.shThis script must be launched on IoT Start Kit platform to reset concentratorchip through GPIO, before starting any application using the concentrator.这个脚本仅在 IoT Start Kit 平台上运行,用于在启动任何应用前,通过GPIO复位集中器芯片。End了解详情

浅谈LoRa及在无线抄表中的设计思路和应用举例

大多数厂家对LoRa的理解或印象仅仅停留在普遍被宣传的距离远,抗干扰,低功耗,如被洗脑一般,更有甚者,过度神话LoRa,简直无所不能的能解决一切问题,极其容易被忽悠掉坑里,我想应该先吐糟一下。某些厂家使用或者测试LoRa,往往过于肤浅,只关注LoRa能传多远距离、穿几层楼层,甚至在对比不同厂家产品的时候都只以距离为唯一的评判标准,其实LoRa芯片只来源于美国SEMTECH,各家拿到的是一样的芯片S...了解详情

了解物联网安全-第2部分(2/3):物联网云的安全和生命周期管理

在本站已分析了“了解物联网安全”的第1部分(LoRa物联站),其中第一部分我们从设备和通信层的角度来看物联网的安全架构。在这篇文章中,分析“了解物联网安全”的第2部分:我们把重点转移到云计算和生命周期管理,提出完全不同挑战和风险。连世界各国的领导人也开始关注将数十亿互联网设备接入互联网的担忧。世界经济论坛最近委托了一份报告,以创建一套指导方针,专为董事会层面使用,解决在新兴市场基于超连接技术的网络...了解详情

LoRaWAN协议中文版 第17章 Class C – 持续接收的终端

前言这是《LoRaWAN102》的译文,即LoRaWAN协议规范 V1.0.2 版本( 2016 年 7 月定稿)。我正在陆续对协议的各个章节进行翻译,具体其他章节的译文,以及译文之外的代码解析,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/翻译开始第17章 持续接收的终端具备Class C 能力的终端,通常应用于供电充足的场景,因此不必精简接收时间。Class C 的终端不能执行 Class B 。Class C 终端会尽可能地使用 RX2 窗口来监听。按照 Class A 的规定,终端是在 RX1 无数据收发才进行 RX2 接收。为了满足这个规定,终端会在上行发送结束和 RX1 接收窗口开启之间,打开一个短暂的 RX2 窗口,一旦 RX1 接收窗口关闭,终端会立即切换到 RX2 接收状态; RX2 接收窗口会程序打开,除非终端需要发送其他消息。注意:没有规定节点必须要告诉服务端它是 Class C 节点。这完全取决于服务端的应用程序,它们可以在 join 流程通过协议交互来获知是否是 Class C 节点。17.1 Class C 的第二接收窗口持续时间Class C 设备执行和 Class A 一样的两个接收窗口,但它们没有关闭 RX2 ,除非他们需要再次发送数据。因此它们几乎可以在任意时间用 RX2 来接收下行消息,包括MAC命令和ACK传输的下行消息。另外在发送结束和 RX1 开启之间还打开了一个短暂的RX2窗口。图13.Class C 终端的接收时隙时序图17.2 Class C 对多播下行的处理和 Class B 类似,Class C 设备也可以接收多播下行帧。多播地址和相关的 NWKSKEY 及 APPSKEY 都需要从应用层获取。Class C 多播下行帧也有相同的限制:不允许携带MAC命令,既不能放在FOpts域中,也不能放在 port 0 的 payload 中,因为多播下行无法像单播帧那样具备相同的鲁棒性。ACK 和 ADRACKReq 位必须要为0。MType 域需要为 Unconfirmed Data Down 类型的数值。FPending 位表明有更多的多播数据要发送。考虑到 Classs C 设备在大部分时间处于接收状态,FPending位不触发终端的任何特殊行为。翻译完了解详情

LoRaWAN协议中文版 第2章 LoRaWAN Classes 类型介绍

前言这是《LoRaWAN102》的译文,即LoRaWAN协议规范 V1.0.2 版本( 2016 年 7 月定稿)。我正在陆续对协议的各个章节进行翻译,具体其他章节的译文,以及译文之外的代码解析,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/翻译开始第2章 LoRaWAN Classes 类型介绍LoRa 是由Semtech面向长距离、低功耗、低速率应用而开发的无线调制技术。本文档中,将 Class A 基础上实现了更多功能的设备称为“更高 class 终端”。2.1 LoRaWAN ClassesLoRa网络包含基础LoRaWAN(称之为Class A)和可选功能(Class B,Class C):图1.LoRaWAN Classes双向传输终端(Class A): Class A 的终端在每次上行后都会紧跟两个短暂的下行接收窗口,以此实现双向传输。传输时隙是由终端在有传输需要时安排,附加一定的随机延时(即ALOHA协议)。这种Class A 操作是最省电的,要求应用在终端上行传输后的很短时间内进行服务器的下行传输。服务器在其他任何时间进行的下行传输都得等终端的下一次上行。划定接收时隙的双向传输终端(Class B): Class B 的终端会有更多的接收时隙。除了Class A 的随机接收窗口,Class B 设备还会在指定时间打开别的接收窗口。为了让终端可以在指定时间打开接收窗口,终端需要从网关接收时间同步的信标 Beacon。这使得服务器可以知道终端正在监听。最大化接收时隙的双向传输终端(Class C): Class C 的终端基本是一直打开着接收窗口,只在发送时短暂关闭。Class C 的终端会比 Class A 和 Class B更加耗电,但同时从服务器下发给终端的时延也是最短的。2.2 文档范围这份LoRaWAN协议还描述了与 Class A 不同的其他 Class 的额外功能。更高 Class 的终端必须满足 Class A 定义的所有功能。注意:物理层帧格式,MAC帧格式,以及协议中更高 class 和 Class A 相同的内容都写在了 Class A 部分,避免内容重复。翻译完了解详情

LoRaWAN协议中文版 第1章 介绍

前言这是《LoRaWAN102》的译文,即LoRaWAN协议规范 V1.0.2 版本( 2016 年 7 月定稿)。我正在陆续对协议的各个章节进行翻译,具体其他章节的译文,以及译文之外的代码解析,可点此查看帖子LoRa学习笔记_汇总。本文作者twowinter,转载请注明作者:http://blog.csdn.net/iotisan/翻译开始第1章 介绍本文档描述了LoRaWAN网络协议,是针对电池供电的终端设备(不管移动还是固定位置)进行优化的一套网络协议。LoRaWAN网络通常采用星型拓扑结构,由拓扑中的网关来转发终端与后台网络服务器间的消息。网关通过标准IP连接来接入网络服务器,而终端则通过单跳的 LoRa 或者 FSK 来和一个或多个网关通讯。虽然主要传输方式是终端上行传输给网络服务器,但所有的传输通常都是双向的。终端和网关间的通讯被分散到不同的信道频点和数据速率上。数据速率的选择需要权衡距离和消息时长两个因素,使用不同数据速率的设备互不影响。LoRa的数据速率范围可以从 0.3kbps 到 50kbps。为了最大程度地延长终端的电池寿命和扩大网络容量,LoRa网络使用速率自适应(ADR)机制来独立管理每个终端的速率和RF输出。虽然每个设备可以在任意信道,任意时间,发送任意数据,但需要注意遵守如下规定:终端的每次传输都使用伪随机方式来改变信道。频率的多变使得系统具有更强的抗干扰能力。终端要遵守相应频段和本地区的无线电规定中的发射占空比要求。终端要遵守相应频段和本地区的无线电规定中的发射时长要求。twowinter注:发射占空比,意思是发射时长占总时长的比例。按照无线电规定,每个设备不能疯狂发射霸占信道,总得给别人一点机会。这份文档主要讲述协议细节,一些基于各地区规定的操作参数,例如发射占空比和发射时长等,在另一份文档[LoRaWAN地区参数]中做具体描述。将这份文档分开,是为了加入新地区参数时不影响基础的协议规范。1.1 LoRaWAN Classes所有的LoRaWAN设备都必须至少实现本文档描述的 Class A 功能。另外也可以实现本文档中描述的 Class B 和 Class C 及后续将定义的可选功能。不管怎么样,设备都必须兼容 Class A。1.2 文档约定MAC命令的格式写作 LinkCheckReq (粗斜体),位和位域的格式写作 FRMPayload (粗体),常量的格式写作 RECEIVE_DELAY1,变量的格式写作 N。在本文档中,所有多字节字段的字节序均采用小端模式EUI 是8字节字段,采用小端模式传输默认所有RFU保留位都设为0翻译完了解详情